SCM Test Plans – Construct

In our last post, we introduced the concept of the Integrated Functional Test (IFT) as a milestone for completing the Design phase of an SCM implementation. These tests ensure that all functional requirements can be met with the software solution and that all data requirements are fully understood prior to the Construct project phase. They also ensure that the software optimally supports the business requirements, and further facilitate solution acceptance and adoption, change management, and they enable root cause analysis of more complex scenarios.

The next type of test positioned in complex SCM planning scenarios is the SPT – the Solution Performance Test – and enables the Construct project phase, prior to Validate. The SPT:

  • Ensures a specific feature, or set of features is working as specified in a full-scope production data set, as it will exist in the live, end-to-end solution.
  • Involves scenario testing multiple variations of production-quality data sets with varying properties representing all relevant business scenarios.
  • Test data sets may be taken directly from production, or massaged to reflect various business scenarios.
  • Primarily focuses on ensuring that the overall solution and system is performing to specification given the data supplied to it; some basic plan quality testing is appropriate at this level.
  • Includes both Data Quality (DQT) and End-To-End (E2E) tests
  • Is conducted throughout the Construct project phase as appropriate.
  • Test suite comprises a milestone gateway for entering the Validate project phase.

Unlike UFTs and IFTs, SPTs are not stand-alone, they leverage full-scope, implementation-dependent, production-like data models covering all key workflows, user scenarios and business cases. The SPT test suite includes tests which focus on key subsets and combinations of functional requirements, as well as numerous workflow tests covering all expected data requirements, use cases and business scenarios, all using production data. These tests and data sets are developed and executed during the Construct phase, and ensure that the solution is working according to spec in all functional areas using real production data. Some tests focus on plan quality, but the primary focus is on basic solution behavior, data quality, end-to end workflow mechanics and data flow validation. Successful execution of the SPT test suite defines a milestone for entering the Validate project phase, where UAT is conducted, and is a primary focus of change management initiatives during the Construct phase.

Various types of SPTs will likely be needed in the test suite to isolate different solution features in the context of multiple business requirements and scenarios. All business and functional requirements, including technical behavior and performance, must be represented within one or more SPTs to ensure a successful SPT test phase.

Similarly, well-designed SPTs further ensure that the fundamental business and functional requirements are properly understood, correctly designed and modeled in the solution, that planning data is adequately cleansed, complete and accurate, and that the required solution features are working together in context as expected at some basic structural level with production data. Successful completion of an SPT phase during Construct can be viewed as a milestone prior to staring the Validate phase and engaging in UAT. Doing so greatly decreases the probability of encountering significant issues and project delays during the Validate phase itself.

SPTs are significantly different than UFTs and IFTs since SPT data sets tend to be larger, the correct test plan results are not known in advance, and entire workflows and dataflows are being tested which may contain many different potential failure points. Test plan scope and Pass/Fail criteria must therefore be carefully thought through and clearly documented in each test plan and data set instance, in terms of how to interpret plan results and what constitutes success / failure in each test plan and data set context.

SPTs also introduce a unique kind of complexity related to test plan interdependency: certain types of solution features may require testing in a certain sequence or pattern, where failure at any given point in the test sequence implies that further testing of downstream steps is uninteresting, whether in the same test plan or in dependent test plans which presume a successful upstream test result. In these cases, the test plans must be executed in their dependency order, and this dependency must be clearly documented and followed in the testing and issue resolution process. Failure at any given point in such test precedence implies a need to resolve the issue before continuing with related dependent test plan steps.

Data Quality Tests (DQT) are a subset of SPT, but belong in a class of their own, requiring a detailed knowledge of solution data requirements and the actual business production data. Data quality is a significant factor in most complex supply chain planning improvement projects, and effective DQTs can be key in early detection and correction of data quality issues, thereby mitigating deployment delays and risk. Further, since most production data evolves over time, DQTs may be used to continuously monitor data quality after Deployment, and support a crucial Data Quality KPI in maintaining system performance and plan quality during the life span of the solution. Typically, DQTs can be automated since data integrity issues are often identified by the solution itself and merely need to be reported to IT and business owners, or DQTs can easily be codified and included in routine batch processing of data interfaces.

Clearly documenting the business and functional requirements represented in each SPT helps identify test plan priorities, understand test dependencies, rank SPTs in importance, and ensures that solution design and workflows address all business and functional requirements.

Ensuring that all UFTs, IFTs, and SPTs pass before embarking on UAT is a practical way of breaking down the overall testing process into more manageable components. These first three test types and phases also help to refine and correct solution design, guide issue resolution, provide for early detection of product defects, and more efficiently focus energy and time during the critical UAT Validation phase, which we will explore in our next post.

SCM Test Plans – Design

In our last post, we introduced the concept of the Unit Functional Test (UFT) as a milestone for completing the Prepare phase of an SCM implementation. Though these tests seldom fail for product reasons, they serve to align the user community on software UI design, workflows, terminology, functional behavior, data requirements, test plan templates, and test plan execution and issue resolution protocol. Additional ancillary benefits of the UFT include facilitation of solution acceptance and adoption, change management, and enabling root cause analysis of more complex scenarios.

The next type of test positioned in complex SCM planning scenarios is the Integrated Functional Test (IFT) – and enables the Design project phase, prior to Construct and Validate. The IFT:

  • Tests a combination of functional requirements on a larger, static data set with a known result;
  • Generally uses production data with some dummy data filled in as needed;
  • Test suite covers all functional requirements;
  • Includes complete workflow tests representing typical planner use patterns, solution workflows and planning scenarios relevant to all relevant business processes;
  • Is useful for explaining and illustrating functional solution behavior in robust, holistic combinations, as well as solution design, data and configuration requirements.

Like UFTs, IFTs are also stand-alone, but unlike UFTs, IFTs are more implementation-dependent, configured to combine specific features required in the current SCM implementation. These are more comprehensive tests on larger data sets which focus on key business cases and scenarios, including full-scale production-quality data sets, and have a known result. IFTs combine multiple solution features in key combinations according to business requirements, including full-scope test plans and data sets which span all functional and business requirements and represent realistic planner workflows. IFTs are developed and executed as part of the Design project phase, depend on the successful passing of the UFT test suite, and are essential for validating overall solution design.

Since building and validating the prototype model is a key requirement of the Design phase, as required functionalities and solution configurations are determined they can be conveniently instantiated into a series of IFT data sets by solution architects with minimal effort, and executed by business users as a milestone for entering the Construct phase. So, building and executing IFTs should not require significant development time unrelated to key project milestones, and may decrease the deployment time by pinpointing design issues early in the project timeline.

Like the UFT, the IFT enables business users to become comfortable with both the software UI and solution behavior in the context of complete user workflows. They are leveraged by change management program initiatives and activities to generate awareness, understanding, confidence and enthusiasm in the solution deployment during the Design phase. This activity equips business users with an understanding of how the software meets their business requirements, helps identify and resolve gaps in the solution design, and positions the business for solution adoption and acceptance. User  engagement in developing and executing the IFT test suite enables them to understand how important the next test type, the System Performance Test, is for implementation success, and to drive and own this test phase.

SCM Test Plans – Prepare

In our last post introducing a world-class SCM testing strategy, we considered the importance of a collaborative approach when testing enabling technologies in complex SCM environments. A hands-off mindset in such contexts is naïve at best, generally leading to frustration and sub-optimal solution value, if not outright failure. Experienced SCM professionals recognize the nature of this problem and adopt a comprehensive, collaborative strategy for ensuring success.

Four distinct types of tests are relevant when addressing this challenge, corresponding to four, distinct SCM project phases; each kind of test plays a necessary role in ensuring project success.

The first type of test recommended in complex SCM planning scenarios is the UFT – the Unit Functional Test – and enables the Prepare project phase, prior to Design and Construct. The UFT:

  • Tests a specific solution feature on a small, static data set with a known result;
  • Might use dummy data rather than realistic production data;
  • Is useful for explaining and illustrating functional solution behavior, both in isolation and in limited combinations, as well as solution design, data and configuration requirements.

UFTs can be stand-alone, independent of any given software implementation, so they are easily developed and executed early in the Prepare project phase. These tests are typically short and simple, based on small data sets which are relatively easily understood, have a very focused scope, and a known result. They each comprise a simple, clearly-documented workflow and Pass/Fail criterion, such that they can be executed and understood by those who do not yet know the new software.

Due to their simplicity and limited scope, the UFT can serve to familiarize users with the application UI, navigation and workflows, train users in solution-specific terminology and behavior, and clarify data requirements for solution architects and data integrators. Since each UFT scenario tends to focus on a single aspect of the solution using a simple, static data model, developing Pass/Fail criteria also tends to be straightforward.

Further, the inherent simplicity of the UFT implies that there is no reason to reinvent the wheel in creating them; the software solution provider should be able to deliver a relevant suite of UFTs out of the box, ready to go and used as-is, or adapted to current business needs with very minimal effort, requiring an insignificant time commitment in the project timeline for positioning them.

Executing and passing a comprehensive set of UFTs relevant to the current software deployment, demonstrating key solution features and behavior in a small, informal test environment, can be conveniently leveraged to enable super-user training, again with no excessive strain on project timelines or resources, and positioned to define a key milestone for the completion of the Prepare phase.

Since UFTs should seldom fail, executing a UFT test suite tends to build momentum and confidence in the new cutting-edge technology through hands-on experience, and provide valuable, practical business-critical insights into the capability and value inherent in an SCM enhancement project early in the implementation, avoiding misinformation and confusion, alleviating fears, and thereby facilitating change management and encouraging solution acceptance and adoption.

If a UFT does happen to fail, which might be due to a solution defect, but more often than not is rooted in incorrect or inaccurate data or solution configuration, the earlier this problem is detected and resolved the better, which is all the more reason to execute this type of test early in the project timeline.

Knowing that all required solution features are represented in the UFT test suite, and that all of them have passed as a milestone to complete the Prepare project phase, simplifies resolution of the problems inevitably encountered in more complex scenarios involving combinations of features and complex interactions with less clearly understood data, and may, in fact, avoid them altogether through aligned user expectations, correct solution design, and thorough data configuration, cleansing and validation.

Finally, and significantly, well-designed UFTs also enable business users to understand the importance and protocol of the overall testing and issue resolution process, and familiarize them with the required test plan templates and issue reporting and resolution workflows and protocols.

The value of Unit Functional Testing during the Prepare phase is significant, but not readily apparent to those unfamiliar with the difficulty and complexity often inherent in SCM implementations. Engaging users in this activity early in the project with simple tests equips them to engage more fully and efficiently in creating and executing the remaining types of tests leveraged in SCM testing methodology in subsequent project phases, as they take on the next test type, the IFT – the Integrated Functional Test – during the Design Phase, which we describe in detail in our next post.

SCM Test Plans – Intro

When deploying enabling technologies in complex supply chain management (SCM) environments, there is significant business benefit in a rigorous testing methodology for validating solution design and performance in each unique deployment. Since plan quality is mission critical in SCM, it is imperative that an appropriate, collaborative testing strategy be developed and executed, especially for highly configurable, data-sensitive applications, to ensure deployment success.

Robust SCM planning applications tend to be highly configurable and extremely data-intensive, such that few deployments are exactly alike. In such contexts it is unrealistic to expect the software solution provider to rigorously test every conceivable solution configuration and data combination within any given software release cycle, implying that each separate instance of software deployment may contain some untested configurations. The testing requirement in these business scenarios inevitably begins to resemble that of purely custom development, where the need for thorough testing is much more intuitive. Given the fact that such systems are mission critical, where deployment failure is unacceptable, it is essential that a collaborative approach to testing be adopted by both the business and the software solution provider.

Designing an effective test strategy in a complex SCM environment requires an intimate knowledge of both the business and functional requirements, as well as the software solution design, features and capabilities. Since it is uncommon for the solution provider to have an intimate knowledge of the business context, and unlikely for business users to be adequately familiar with design and capability of the software application, it is difficult for either party to effectively construct and execute test plans in isolation, so a collaborative effort between the business and the software solution provider in test plan creation and execution is a must.

Unless SCM program managers have relevant prior experience implementing these types of complex systems, they may not realize the importance of their team’s participation in the testing and validation effort, expecting this to be the sole responsibility of the software solution provider. Such a hands-off approach is often a recipe for failure. It is critical that business managers understand this requirement, and adopt a collaborative role in the testing process, even taking ownership and driving it, working closely with the software solution provider in joint-partnership to ensure deployment success.

In the coming posts, we’ll consider four distinct types of tests, and how each plays a key role in an integrated, comprehensive, effective SCM testing strategy.